Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

Daqing Shi, ${ }^{\text {a }}$ Liangce Rong, ${ }^{\text {a }}$ Juxian Wang, ${ }^{\text {a }}$ Xiangshan Wang ${ }^{\text {a }}$ and Hongwen $\mathrm{Hu}^{\text {b }}$
${ }^{\text {a Department of Chemistry, Xuzhou Normal }}$ University, Xuzhou 221116, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: dqshi@263.net

## Key indicators

Single-crystal X-ray study
$T=291 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
$R$ factor $=0.038$
$w R$ factor $=0.091$
Data-to-parameter ratio $=14.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

# 3-Amino-1-(4-fluorophenyl)-3a,3b,6,7-tetrahydrobenz[4,5]indene-2-carbonitrile 

The title compound, $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{FN}_{2}$, has been synthesized by the reductive cyclization induced by a low-valent titanium reagent. The cyclopentene ring adopts an envelope conformation, while the partially saturated six-membered ring adopts a distorted half-chair conformation. Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds between the amino and cyano groups result in the formation of a dimer structure.

## Comment

In the early 1970s, three groups of investigators (Tyreik \& Wolochowicz, 1973; Mukaiyama et al., 1973; McMurry \& Fleming, 1974) established that low-valent titanium can abstract oxygen from ketones or aldehydes, leading to formation of olefins. The reactions induced by low-valent titanium reagents have been studied, revealing that a large number of functional groups can be reduced (Shi et al., 1993, 1998, 2003). We report here the crystal structure of the title compound, (I), which has been synthesized by the cyclization reaction using a low-valent titanium reagent.

(I)

In (I), the five-membered C7-C11 ring adopts an envelope conformation, with atom C11 deviating from the C7-C10 plane by 0.566 (1) A. The six-membered C10-C14/C19 ring adopts a distorted half-chair conformation. Atoms C13, C14,


Figure 1
The molecular structure of (I), showing $50 \%$ probability displacement ellipsoids and the atom-numbering scheme.

Received 16 September 2003 Accepted 19 September 2003 Online 24 September 2003


Figure 2
The molecular packing in the crystal, projected along the $c$ axis.

C 19 and C10 are coplanar, while atoms C11 and C12 deviate from the plane by 0.233 (1) and -0.490 (2) $\AA$, respectively. Molecules show a dimer structure formed by an intermolecular $\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{~N} 2(1-x,-y, 1-z)$ hydrogen bond between the amino and cyano groups (Table 2 and Fig. 2).

## Experimental

The title compound, (I), was prepared by the reaction of 2-cyano-3-(4-fluorophenyl)-3-(1-tetralon-2-yl)propionitrile induced by a lowvalent titanium reagent $\left(\mathrm{TiCl}_{4} / \mathrm{Zn}\right)$ in tetrahydrofuran (m.p. 472473 K). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

## Crystal data

$\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{FN}_{2}$
$M_{r}=304.36$
Monoclinic, $P 2_{\mathrm{d}} / n$
$a=11.516$ (2) A
$b=9.710(1) \AA$
$c=14.914$ (2) $\AA$
$\beta=103.97(1)^{\circ}$
$V=1618.4$ (4) $\AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.249 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 30 \\
& \quad \text { reflections } \\
& \theta=2.9-14.4^{\circ} \\
& \mu=0.08 \mathrm{~mm}^{-1} \\
& T=291(2) \mathrm{K} \\
& \text { Block, colorless } \\
& 0.52 \times 0.42 \times 0.30 \mathrm{~mm}
\end{aligned}
$$

## Data collection

Siemens $P 4$ diffractometer $\omega$ scans
3487 measured reflections
3005 independent reflections
1534 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.009$
$\theta_{\text {max }}=25.5^{\circ}$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.091$
$S=0.83$
3005 reflections
209 parameters
H -atom parameters constrained

$$
h=0 \rightarrow 13
$$

$$
k=0 \rightarrow 11
$$

$$
l=-18 \rightarrow 17
$$

3 standard reflections every 97 reflections intensity decay: $2.9 \%$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0443 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.12 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.09 \mathrm{e}^{-3} \\
& \text { Extinction correction: } \text { SHELXTL } \\
& \text { Extinction coefficient: } 0.0113(12)
\end{aligned}
$$

Table 1
Selected geometric parameters ( $\left({ }^{\circ},{ }^{\circ}\right)$.

| F-C3 | $1.367(2)$ | $\mathrm{C} 8-\mathrm{C} 9$ | $1.349(2)$ |
| :--- | :---: | :--- | ---: |
| $\mathrm{N} 1-\mathrm{C} 9$ | $1.343(2)$ | $\mathrm{C} 8-\mathrm{C} 20$ | $1.407(2)$ |
| $\mathrm{N} 2-\mathrm{C} 20$ | $1.145(2)$ | $\mathrm{C} 9-\mathrm{C} 10$ | $1.514(2)$ |
| $\mathrm{C} 7-\mathrm{C} 8$ | $1.515(2)$ | $\mathrm{C} 10-\mathrm{C} 11$ | $1.540(2)$ |
| $\mathrm{C} 7-\mathrm{C} 11$ | $1.549(2)$ |  |  |
| $\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$ | $116.5(1)$ | $\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 10$ | $121.3(1)$ |
| $\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 11$ | $101.0(1)$ | $\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$ | $110.0(1)$ |
| $\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7$ | $111.1(1)$ | $\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$ | $101.8(1)$ |
| $\mathrm{C} 20-\mathrm{C} 8-\mathrm{C} 7$ | $124.7(1)$ | $\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 7$ | $102.8(1)$ |
| N1-C9-C8 | $128.6(2)$ |  |  |
| C5-C6-C7-C8 | $-35.8(2)$ | $\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 19$ | $33.5(2)$ |
| $\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 11$ | $83.6(2)$ | $\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$ | $161.3(2)$ |
| $\mathrm{C} 20-\mathrm{C} 8-\mathrm{C} 9-\mathrm{N} 1$ | $4.6(3)$ | $\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 11-\mathrm{C} 12$ | $-42.9(2)$ |
| $\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{N} 1$ | $176.29(17)$ |  |  |

Table 2
Hydrogen-bonding geometry ( $\mathrm{A},{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{~N} 2^{\mathrm{i}}$ | 0.86 | 2.19 | $3.019(2)$ | 163 |

Symmetry code: (i) $1-x,-y, 1-z$.

H atoms were positioned geometrically and treated as riding on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.97 \AA$ and $\mathrm{N}-\mathrm{H}$ distances of $0.86 \AA$; the $U_{\text {iso }}(\mathrm{H})$ values were set equal to $1.2 U_{\text {iso }}$ (parent atom).

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 1997); program(s) used to solve structure: $S H E L X T L$; program(s) used to refine structure: SHELXTL; molecular graphics: $S H E L X T L$; software used to prepare material for publication: SHELXTL.

We thank the Foundation of the 'Surpassing Project' of Jiangsu Province and the Natural Science Foundation of the Education Committee of Jiangsu Province (grant No. 03KJB150136) for financial support.

## References

McMurry, J. E. \& Fleming, M. P. (1974). J. Am. Chem. Soc. 96, 4708-4709.
Mukaiyama, T., Sato, T. \& Hanna, J. (1973). Chem. Lett. 10, 1041-1044.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Shi, D. Q., Chen, J. X., Chai, W. Y., Chen, W. X. \& Kao, T. Y. (1993). Tetrahedron Lett. 34, 2963-2964.
Shi, D. Q., Lu, Z. S., Mu, L. L. \& Dai, G. Y. (1998). Synth. Commun. 28, 10731078.

Shi, D. Q., Rong, L. C., Wang, J. X., Zhuang, Q. Y., Wang, X. S. \& Hu, H. W. (2003). Tetrahedron Lett. 44, 3199-3201.

Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Tyreik, S. \& Wolochowicz, I. (1973). Bull. Soc. Chim. Fr. 6, 2147-2148.

